Day 3: Classification

Lucas Leemann

Essex Summer School

Introduction to Statistical Learning
1 Motivation for Classification

2 Logistic Regression
 The Linear Probability Model
 Building a Model from Probability Theory

3 Linear Discriminant Analysis
 Building a Model from Probability Theory
 Example 1 (k=2)
 Example 2

4 Comparison of Classification Methods
Classification

Standard data science problem, i.e.

- who will default on credit loan?
- which customers will come back?
- which e-mails are spam?
- which ballot stations manipulated the vote returns?
- who is likely to vote for which party?
Logistic Regression
The linear probability model relies on linear regression to analyze binary variables.

\[Y_i = \beta_0 + \beta_1 \cdot X_{1i} + \beta_2 \cdot X_{2i} + \ldots + \beta_k \cdot X_{ki} + \varepsilon_i \]

\[Pr(Y_i = 1 | X_1, X_2, \ldots) = \beta_0 + \beta_1 \cdot X_{1i} + \beta_2 \cdot X_{2i} + \ldots + \beta_k \cdot X_{ki} \]

Advantages:

- We can use a well-known model for a new class of phenomena
- Easy to interpret the marginal effects of \(X \)
Problems with Linear Probability Model

The linear model needs a continuous dependent variable, if the dependent variable is binary we run into problems:

- Predictions, \hat{y}, are interpreted as probability for $y = 1$
 \[P(y = 1) = \hat{y} = \beta_0 + \beta_1 X, \text{ can be above 1 if } X \text{ is large enough} \]
 \[P(y = 0) = \hat{y} = \beta_0 + \beta_1 X, \text{ can be below 0 if } X \text{ is small enough} \]

- The errors will not have a constant variance.
 \[\text{For a given } X \text{ the residual can be either } (1 - \beta_0 - \beta_1 X) \text{ or } (\beta_0 + \beta_1 X) \]

- The linear function might be wrong
 \[\text{Imagine you buy a car. Having an additional 1000£ has a very different effect if you are broke or if you already have another 12,000£ for a car.} \]
Predictions can lay outside \(I = [0, 1] \)

Residuals if the dependent variable is binary:
Predictions should only be within $I = [0, 1]$

- We want to make predictions in terms of probability
- We can have a model like this: $P(y_i = 1) = F(\beta_0 + \beta_1 X_i)$
 where $F(\cdot)$ should be a function which never returns values below 0 or above 1
- There are two possibilities for $F(\cdot)$: cumulative normal (Φ) or logistic (Δ) distribution
Logit Model

The logit model is then: \(P(y_i = 1) = \frac{1}{1 + \exp(-\beta_0 - \beta_1 X_i)} \)

For \(\beta_0 = 0 \) and \(\beta_1 = 2 \) we get:
Logit Model: Example

- We can make a prediction by calculating: $P(y = 1) = \frac{1}{1 + \exp(-\beta_0 - \beta_1 \cdot X)}$
Logit Model: Example

- A positive β_1 makes the s-curve increase.
- A smaller β_0 shifts the s-curve to the right.
- A negative β_1 makes the s-curve decrease.
Example: Women in the 1980s and Labour Market

```r
> m1 <- glm(inlf ~ kids + age + educ, dat=data1, family=binomial(logit))
> summary(m1)

Call:
  glm(formula = inlf ~ kids + age + educ, family = binomial(logit),
      data = data1)
Deviance Residuals:
     Min       1Q   Median       3Q      Max
-1.8731 -1.2325  0.8026  1.0564  1.5875

Coefficients:
             Estimate  Std. Error   z value  Pr(>|z|)
(Intercept) -0.11437     0.73459   -0.156   0.87628
 kids   -0.50349     0.19932   -2.526   0.01154 *
  educ   0.16902      0.03505    4.822 1.42e-06 ***
  age  -0.03108      0.01137   -2.734  0.00626 **
---
Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.75  on 752 degrees of freedom
Residual deviance: 993.53  on 749 degrees of freedom
AIC: 1001.5
```
Example: Women 1980 (2)

Call:
\[
glm(formula = \text{inlf} \sim \text{kids} + \text{educ} + \text{age}, \text{family} = \text{binomial(logit)}, \\
\quad \text{data} = \text{data1})
\]

Coefficients:
\[
\begin{array}{cccccc}
\text{Estimate} & \text{Std. Error} & \text{z value} & \text{Pr(>|z|)} \\
\text{(Intercept)} & -0.11437 & 0.73459 & -0.156 & 0.87628 \\
\text{kids} & -0.50349 & 0.19932 & -2.526 & 0.01154 * \\
\text{educ} & 0.16902 & 0.03505 & 4.822 & 1.42e-06 *** \\
\text{age} & -0.03108 & 0.01137 & -2.734 & 0.00626 ** \\
\end{array}
\]

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

- Only interpret direction and significance of a coefficient
- The test statistic always follows a normal distribution (z)
Example: Women 1980 (3)

```r
glm(formula = inlf ~ kids + educ + age, family = binomial(logit),
data = data1)
```

Coefficients:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | -0.11437 | 0.73459 | -0.156 | 0.87628 |
| kids | -0.50349 | 0.19932 | -2.526 | 0.01154 * |
| educ | 0.16902 | 0.03505 | 4.822 | 1.42e-06 *** |
| age | -0.03108 | 0.01137 | -2.734 | 0.00626 ** |

- How can we generate a prediction for a woman with no kids, 13 years of education, who is 32?
 - Compute first the prediction on y^*, i.e. just compute
 \[\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \]
 - \[P(y = 1) = \frac{1}{1 + \exp(0.11 + 0.50 \cdot 0 - 0.17 \cdot 13 + 0.03 \cdot 32)} = \frac{1}{1 + \exp(-1.09)} = 0.75 \]
Prediction

```r
> z.out1 <- zelig(inlf ~ kids + age + educ + exper + huseduc + huswage, model = "logit", data = data1)

> average.woman <- setx(z.out1, kids=median(data1$kids), age=mean(data1$age), educ=mean(data1$educ),
                         exper=mean(data1$exper), huseduc=mean(data1$huseduc), huswage=mean(data1$huswage))
> s.out <- sim(z.out1, x=average.woman)
> summary(s.out)

  sim x :
    -----
  ev
       mean   sd  50%   2.5%   97.5%
[1,]  0.5746569 0.02574396 0.5754419 0.5232728 0.6217502
  pv
       0   1
[1,]  0.432 0.568
```
Linear Discriminant Analysis
Linear Discriminant Analysis

- Why something new?
 - Might have more than 3 classes
 - Problems of separation
- Basic idea: We try to learn about Y by looking at the distribution of X
- Logistic regression did this: $Pr(Y = k|X = x)$
- LDA will exploit Bayes’ theorem and infer class probability directly from X and prior probabilities
Basic Idea: Linear Discriminant Analysis

(James et al, 2013: 140)
Math-Stat Refresher: Bayes

Doping tests:

- 99% sensitive (correctly identifies doping abuse), \(P(+|D) = 0.99 \)
- 99% specific (correctly identifies appropriate behavior), \(P(\neg|\text{noD}) = 0.99 \)
- 0.5% athletes take illegal substances
- You take a test and receive a positive result. What is the probability that you actually took an illegal substance?

\[
P(D|+) = \frac{P(D) \cdot P(+|D)}{P(D) \cdot P(+|D) + P(\text{noD}) \cdot P(+|\text{noD})}
\]

\[
P(D|+) = \frac{0.005 \cdot 0.99}{0.005 \cdot 0.99 + 0.995 \cdot 0.01} = 0.332
\]
LDA: The Mechanics (with one X)

- We have X and it follows a distribution $f(x)$
- We have k different classes
- Based on Y, we can calculate the prior probabilities π_k

1. Define $f_k(x)$ as the distribution of X for class k (p. 140/141)
2. Note: $f_k(x) = P(X = x|Y = k)$
3. Hence:

$$P(Y = k|X = x) = \frac{\pi_k \cdot f_k(x)}{\sum_{l=1}^{K} \pi_l \cdot f_l(x)}$$
The Mechanics II

1. $f_k(x)$ is assumed to be a normal distribution with $\mu_k = \frac{\sum x_{i,k}}{n_k}$ and
 $$\sigma = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:y_i=k} (x_i - \mu_k)^2$$

2. compute for each k: $\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$

3. Classify i to be in k if $\delta_k(x) > \delta_j(x) \forall j \neq k$
Simple case: $K=2$

(James et al, 2013: 140)
Example: Female Labor Force
LDA: Female Labor Force Example

```r
> fit <- lda(inlf ~ exper, data=data1, na.action="na.omit", CV=TRUE)
> fit$class
[1] 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1
[78] 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
[155] 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1
[232] 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1
[309] 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1
[386] 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0
[463] 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0
[540] 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
[617] 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0
[694] 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1
Levels: 0 1
> table(fit$class)

     0 1
315 438
> table(fit$class, data1$inlf)

     0 1
0 196 119
1 129 309
```
Example with several variables

```r
> # several variables LDA
> fit <- lda(inlf ~ age + exper + faminc, data=data1, na.action="na.omit", CV=TRUE)
> fit$class

  [1] 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1
  [78] 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
  [155] 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
  [232] 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1
  [309] 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0
  [386] 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1
  [463] 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 1 1
  [540] 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0
  [617] 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0
  [694] 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

Levels: 0 1

> table(fit$class)

   0 1
309 444

> table(fit$class, data1$inlf)

   0 1
  0 197 112
  1 128 316

partimat(as.factor(inlf) ~ exper + faminc + age, data=data1, method="lda", nplots.vert=2, nplots.hor=2)
```

3 Variables (...and ugliest plot possible)
K=3 and two variables

(James et al, 2013: 143)
LDA Summary

- Bayes’ rule can help for classification
- But we normally do not know $f_k(x)$ and hence assume normal function and estimate μ_k and σ based on data
- This method is very similar to naive Bayes classifier (which assumes off-diagonal of vcov to be 0)
- Extension of LDA is QDA (Quadratic Discriminant Analysis), more flexible (more data since QDA estimates Σ_k for each k)
Comparison of Classification Methods
Various Methods

- KNN
- Logistic regression
- LDA
- QDA

From most structure to least structure:
- Logistic regression/LDA $>>$ QDA $>>$ KNN

Interpretability:
- Logistic regression $>>>>$ LDA, QDA, KNN
Comparison

\[x_{1i} \sim N(\mu_1, \sigma) \]
\[x_{2i} \sim N(\mu_2, \sigma) \]
\[\rho_{x_1,x_2} = 0 \]

\[x_{1i} \sim N(\mu_1, \sigma) \]
\[x_{2i} \sim N(\mu_2, \sigma) \]
\[\rho_{x_1,x_2} = -0.5 \]

\[x_{1i} \sim t_1 \]
\[x_{2i} \sim t_2 \]

(James et al, 2013: 152)
Comparison

\[x_{1i} \sim N(\mu_1, \Sigma_1) \]

\[x_{2i} \sim N(\mu_2, \Sigma_2) \]

\[\rho_{x_{11},x_{12}} = 0.5 \text{ but } \rho_{x_{21},x_{22}} = -0.5 \]

\[P(k = 2) = \Delta(X_1^2 + X_2^2 + X_1 \cdot X_2) \]

\[P(k = 2) = f(X_1, X_2), \text{ whereas } f(x) \text{ is highly non-linear} \]

(James et al, 2013: 152)
Summary

- Various classification methods.
- Trade-off between structure and flexibility.
- Every problem has another optimal method.