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Fundamental Problem: Model Complexity

Red: Test error.
Blue: Training error. (Hastie et al, 2008: 220)
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Choosing the Optimal Model

• The model containing all of the predictors will always have the
smallest RSS and the largest R2, since these quantities are related
to the training error.

• We wish to choose a model with low test error, not a model with
low training error. Recall that training error is usually a poor
estimate of test error.

• Therefore, RSS and R2 are not suitable for selecting the best model
among a collection of models with di�erent numbers of predictors.
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Estimating test error: two approaches

• We can indirectly estimate test error by making an adjustment to
the training error to account for the bias due to overfitting.

• We can directly estimate the test error, using either a validation set
approach or a cross-validation approach, as discussed in previous
lectures.
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Cp, AIC, BIC, and Adjusted R2

• These techniques adjust the training error for the model size, and
can be used to select among a set of models with di�erent numbers
of variables.

• The next figure displays Cp, BIC, and adjusted R2 for the best
model of each size produced by best subset selection on the Credit
data set.
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Example: Credit data
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Mallow’s Cp & AIC
• Mallow’s Cp:

Cp = 1
n (RSS + 2d ‡̂2),

where d is the total number of parameters used and ‡̂2 is an estimate of
the variance of the error ‘ associated with each response measurement.

• The AIC criterion is defined for a large class of models fit by maximum
likelihood:

AIC = 2logL + 2ḋ

where L is the maximized value of the likelihood function for the
estimated model.

• In the case of the linear model with Gaussian errors, maximum likelihood
and least squares are the same thing, and Cp and AIC are equivalent.
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Details on BIC

BIC = 1
n (RSS + log(n)d ‡̂2)

• Like Cp, the BIC will tend to take on a small value for a model with
a low test error, and so generally we select the model that has the
lowest BIC value.

• Notice that BIC replaces the 2d ‡̂2 used by Cp with a log(n)d ‡̂2

term, where n is the number of observations.
• Since log(n) > 2 for any n > 7, the BIC statistic generally places a

heavier penalty on models with many variables, and hence results in
the selection of smaller models than Cp.
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Adjusted R2

• For a least squares model with d variables, the adjusted R2 statistic is
calculated as

Adjusted R2 = 1 ≠ RSS/(n ≠ d ≠ 1)
TSS/(n ≠ 1)

where TSS is the total sum of squares.
• Unlike Cp, AIC, and BIC, for which a small value indicates a model with a

low test error, a large value of adjusted R2 indicates a model with a small
test error.

• Maximizing the adjusted R2 is equivalent to minimizing RSS
n≠d≠1 . While RSS

always decreases as the number of variables in the model increases, RSS
n≠d≠1

may increase or decrease, due to the presence of d in the denominator.
• Unlike the R2 statistic, the adjusted R2 statistic pays a price for the

inclusion of unnecessary variables in the model.
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Validation and Cross-Validation

• Each of the procedures returns a sequence of models Mk indexed
by model size k = 0, 1, 2, . . . . Our job here is to select k̂. Once
selected, we will return model Mk̂

• We compute the validation set error or the cross-validation error for
each model Mk under consideration, and then select the k for
which the resulting estimated test error is smallest.

• This procedure has an advantage relative to AIC, BIC, Cp, and
adjusted R2, in that it provides a direct estimate of the test error.

• It can also be used in a wider range of model selection tasks, even
in cases where it is hard to pinpoint the model degrees of freedom
(e.g. the number of predictors in the model) or hard to estimate the
error variance ‡2.
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Example: Credit data
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Explaining the example above
• The validation errors were calculated by randomly selecting

three-quarters of the observations as the training set, and the
remainder as the validation set.

• The cross-validation errors were computed using k = 10 folds. In
this case, the validation and cross-validation methods both result in
a six-variable model.

• However, all three approaches suggest that the four-, five-, and
six-variable models are roughly equivalent in terms of their test
errors.

• In this setting, we can select a model using the one-standard-error
rule. We first calculate the standard error of the estimated test
MSE for each model size, and then select the smallest model for
which the estimated test error is within one standard error of the
lowest point on the curve.
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Subset Selection
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Subset Selection: Which Variables?

Algorithm:
1 Generate an empty model and call it M0

2 For each k = 1....p :
i) Generate all

!p
k
"

possible models with k explanatory variables
ii) determine the model with the best criteria value (e.g. R2) and
call it Mk

3 Determine best model within the set of these models: M0, ...., Mp
- rely on CV or a criteria like AIC, BIC, R2, or Cp
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Example 1 (1)

> regfit.full <- regsubsets(mpg ˜ ., Auto[,-9])
> summary(regfit.full)
Subset selection object
Call: regsubsets.formula(mpg ˜ ., Auto[, -9])
7 Variables (and intercept)

Forced in Forced out
cylinders FALSE FALSE
displacement FALSE FALSE
horsepower FALSE FALSE
weight FALSE FALSE
acceleration FALSE FALSE
year FALSE FALSE
origin FALSE FALSE
1 subsets of each size up to 7
Selection Algorithm: exhaustive

cylinders displacement horsepower weight acceleration year origin
1 ( 1 ) " " " " " " "*" " " " " " "
2 ( 1 ) " " " " " " "*" " " "*" " "
3 ( 1 ) " " " " " " "*" " " "*" "*"
4 ( 1 ) " " "*" " " "*" " " "*" "*"
5 ( 1 ) " " "*" "*" "*" " " "*" "*"
6 ( 1 ) "*" "*" "*" "*" " " "*" "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
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Example 1 (2)
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Subset Selection

• Subset selection can be very challenging when p is large since we
are then looking at

!p
k
"

possibilities in the kth step. For p = 10 we
have about 1000 models and for p = 20 we are already facing more
than 1 million models.

• What if p >> n?
• Di�erent approaches: stepwise selection
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Stepwise Selection
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Forward Stepwise Selection (1)

Algorithm:
1 Generate an empty model and call it M0

2 For k = 0....p ≠ 1 :
i) Consider all p ≠ k possible models that have one predictor more
than Mk
ii) determine the best model among all models in (i) and call it
Mk+1
(Here: best refers to highest R2 or smallest MSE since k constant within each step)

3 Determine best model within the set of these models: M0, ...., Mp
- rely on CV or on a criteria like AIC, BIC, R2, or Cp
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Forward Stepwise Selection (2)

• Best subset selection involves looking at 2p models, whereas
forward stepwise selection only uses 1 + p(p + 1)/2 models.

• Can be used when n < p (at least for M0 up to Mn≠1).
• Forward stepwise selection usually does well but it is not guaranteed

to find best model:

(James et al. 2013: 209)
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Backwards Stepwise Selection (1)

Algorithm:
1 Let Mp denote the full model with p predictors
2 For k = p, p ≠ 1, p ≠ 2, ....., 1:

i) Consider all k possible models that have k ≠ 1 predictors (one
less than Mk)
ii) determine the best model among the k models in (i) and call it
Mk≠1
(Here: best refers to highest R2 or smallest MSE since k constant within each step)

3 Determine best model within the set of these models: M0, ...., Mp
- rely on CV or on a criteria like AIC, BIC, R2, or Cp
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Backwards Stepwise Selection (2)

• As forward stepwise selection backward stepwise selection only
needs to estimate 1 + p(p + 1)/2 models.

• BSS cannot be used when p > n.
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Example 2

> regfit.full <- regsubsets(Salary ˜ .,data=Hitters, nvmax=19)
> regfit.for <- regsubsets(Salary ˜ .,data=Hitters, nvmax=19, method="forward")
> regfit.back <- regsubsets(Salary ˜ .,data=Hitters, nvmax=19, method = "backward")
>
> coef(regfit.full, 7)
(Intercept) Hits Walks CAtBat CHits CHmRun DivisionW PutOuts
79.4509472 1.2833513 3.2274264 -0.3752350 1.4957073 1.4420538 -129.9866432 0.2366813

>
> coef(regfit.for, 7)
(Intercept) AtBat Hits Walks CRBI CWalks DivisionW PutOuts
109.7873062 -1.9588851 7.4498772 4.9131401 0.8537622 -0.3053070 -127.1223928 0.2533404

>
> coef(regfit.back, 7)
(Intercept) AtBat Hits Walks CRuns CWalks DivisionW PutOuts
105.6487488 -1.9762838 6.7574914 6.0558691 1.1293095 -0.7163346 -116.1692169 0.3028847

>

Models 1-6 identical, but models with seven variables are di�erent
according to the three methods.
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Cross-Validation vs. Criteria
• We can either look at the test error or make an adjustment to the

training error.
• Given recent advancements in computation power there is little to

say against CV.
• One-standard-deviation rule: When comparing MSE we should also

compute the standard error and chose a model within one standard
error of the best model (here 3 variables)

(James et al. 2013: 214)
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Lab

• We will apply various selection methods
• Write a function to select best subset (weekend project)
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