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So Far

© Yesterday: Constrained linear models to reduce complexity
(reducing variance)

o Today: More complex relationships between outcome and predictor:
polynomials, splines, GAM.



Linearity and social reality

Social world is almost never linear.
Often the linearity assumption is good enough.

When linearity doesn't hold we can use

polynomials,

step functions,

splines,

local regression, and
generalized additive models

These models offer a lot of flexibility, without losing too much
interpretability.
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Today

Polynomials: Include higher order X's to increase flexibility:

Y = 50+51X1+52X12+53X13+~-+BJX{+5

Splines: A more flexible form of polynomial regression, where:

_ 50+51X1+52X12—|—53X13+—I—ﬁj)q—l-& if Xl <c,
50 + 61X1 + 52X12 + 63X13 4+ ...+ BJX{ +e f X1 > C.

GAM: Generalized additive model, we have various functional forms
for the individual variables:

Y = /30+f(Xl)—i-f(X2)+f(X3)+...+f()<j)+€
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Polynomials



Polynomials

© Adding higher ordered X's allows to increase the flexibility of a
model.

o While in general:
Y = Bo+BiXi+ BoXE 4 BaXE o+ BiX] 4 e

we usually do not go beyond the forth degree.
« We are hoping to reduce bias at the cost of variance.

« Can also be applied to classification (e.g. logistic regression).



Polynomial and Data Fit (d=4)
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(Hastie et al, 2008: 267)



Example: Polynomial and Auto Dataset

Acceleration ~ f(horsepower)

> fit.1=Im(acceleration~horsepower,data=Auto)

> fit.2=1m(acceleration”poly(horsepower,2),data=Auto)
> fit.3=1m(acceleration”poly(horsepower,3),data=Auto)
>
>
>

fit.4=Im(acceleration”poly(horsepower,4),data=Auto)
fit.5=Im(accelerationpoly (horsepower,5),data=Auto)
anova(fit.1,fit.2,fit.3,fit.4,fit.5)

Analysis of Variance Table

Model
Model
Model

: acceleration ~ horsepower

: acceleration ~ poly(horsepower, 2)

: acceleration ~ poly(horsepower, 3)

Model 4: acceleration ~ poly(horsepower, 4)

Model 5: acceleration ~ poly(horsepower, 5)

Res.Df RSS Df Sum of Sq F Pr(>F)
390 1562.4
389 1533.4 1 29.022 7.7671 0.005583 **
388 1529.2 1 4.270 1.1428 0.285727
387 1511.8 1 17.387 4.6531 0.031614 *
386 1442.3 1 69.454 18.5877 2.063e-05 *xx*

AW N e

SIS

Signif. codes: 0 *¥* 0.001 ** 0.01 * 0.05 . 0.1 1



Example: Polynomial and Auto Dataset 2
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(code for figure)

par (mfrow=c(1,1))

plot (Auto$horsepower,Auto$acceleration, ylab="Acceleration",
xlab="Horsepower", pch=19, col="darkgrey", cex=0.7)

# fit.2

hsplims=range (horsepower)

hsp.grid=seq(from=hsplims[1],to=hsplims[2])

preds=predict (fit.2,newdata=1list (horsepower=hsp.grid),se=TRUE)

se.bands=cbind (preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)

lines(hsp.grid,preds$fit,col="blue", 1lwd=3)

lines(hsp.grid,se.bands[,1],col="blue", lwd=1, lty=2)

lines(hsp.grid,se.bands[,2],col="blue", lwd=1, lty=2)

# fit.5

hsplims=range (horsepower)
hsp.grid=seq(from=hsplims[1],to=hsplims[2])

preds=predict (fit.5,newdata=list (horsepower=hsp.grid) ,se=TRUE)
se.bands=cbind(preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)
lines(hsp.grid,preds$fit,col="red", 1lwd=3)
lines(hsp.grid,se.bands[,1],col="red", lwd=1, lty=2)
lines(hsp.grid,se.bands[,2],col="red", lwd=1, 1lty=2)

legend(185,24,c("degree-2 polynomial","degree-5 polynomial"), 1lty=1, col=c("blue", "red"), lwd=3, bty="n")



Step Functions

Another way of creating transformations of a variable — cut the variable
into distinct regions.

Ci(X) = I(X < 35), Co(X) = I(35 < X < 50),..., Cs(X) = I(X > 65)

Piecewise Constant
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Step functions continued

Easy to work with. Creates a series of dummy variables representing
each group.

Useful way of creating interactions that are easy to interpret. For
example, interaction effect of Year and Age:

I(Year < 2005) - Age, I(Year > 2005) - Age

would allow for different linear functions in each age category.

In R: /(year < 2005) or cut(age, c(18,25, 40, 65,90)).

Choice of cutpoints or knots can be problematic. For creating
nonlinearities, smoother alternatives such as splines are available.
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Splines



Splines 1 (piecewise polynomials)

We want to avoid a global function and rather split the range of X
in different areas.

In each area we fit a separat polynomial leading to a very flexible
function.

This is known as piecewise polynomials:

 BoBIXu+ BIXE+ BIXE 4+ L+ BiX +e if Xy <c
Bo+ BPXy + BEXZ + BEXE + .+ BPX] +e if X1 > c.

We call ¢ a knot and the more knots, the more parameters to
estimate.
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Splines 2 (piecewise polynomials)
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(Hastie et al, 2008: 272)



Splines 3 (constrained splines)

We want to have a continuous function and no breaks at the
knot(s).

One way to achieve that is to include constraints, s.t. that the
function has to be continuous (ur) or also that the first derivative(s)
has to be continuous (Ir) to create a smooth function.

degree-d spline: Is a spline with that a degree-d polynomial
between two knots and is continuous up to the d — 1 derivative
(squared spline is continuous at first derivative).

L. Leemann (Essex Summer School) Day 7 Introduction to SL 17 / 31



Splines 4 (degree-d spline)

How do we get these splines to be continuous up to the d — 1th
derivative?

It turns out that we can just create a function with K + 4
parameters (cubic spline), s.t.

Y = Bo+BiX+ BX?+ B X3+ Bah(x,&1)... + Brash(x, k) + ¢

whereas

_ 3 if
h(x, &) = (x — &) = { éxaf X£k<)gk'. X > &,

This will guarantee that the resulting spline function is continous.

High variance at boundaries of X, but can add constraint, s.t. first & last
part are linear (a.k.a. natural cubic spline)
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Splines 5 (natural cubic splines)
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Splines 6 (Where to set the knots?)
We can set the knots at equal intervals (quantiles), e.g. three knots at

25th, 50th, and 75th percentile:
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Splines 7 (Example with Auto dataset)
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Splines 8 (wrapping up)

© There are many more possibilities (smoothing splines, see 7.5)
* How do we choose the number of knots? Cross-validation can help!
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Polynomial vs Splines

Natural splines often outperform polynomials.

NS equally flexible as P, but more stable.
Advantage comes through the setting of knots.!

CV can help explore the right number of DoF.

With the R command ns(x, df=d) you set the number of knots at d — 1.



Local regression

Local Regression
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« With a sliding weight function, we fit separate linear fits over the
range of X by weighted least squares.

o If p # 1 we need many training observations since there are many
neighborhoods.



Local regression

—— Spanis 0.2 (16.4 Degrees of Freedom)
— Spanis0.7 (53Dognees Freedom)
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Generalized Additive Model



Generalized Additive Models (GAM)

« Solutions so far for one X, but we often have several predictors.

* We will extend the classic regression,

Yi = Po+ BiXui+ BeXoi 4+ + BiXii e
to be like this:
Yi = Bo+ A(Xi)+ B(Xoi) 4+ + £(Xi) + i

+ we will rely on splines or polynomials for f;(-).



GAM 2
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(Hastie et al, 2008: 284)
Note: fi() and f»() are natural splines with 4(5) DoF, while f3() is a step function (dummies).



(Dis-)Advantages of GAM

GAMs allow to model non-linear relationships with several variables.
Non-linear fit can be much better than linear approximation.

Because GAMs are additive, we can control for other factors and
include all information.

We cannot model interactions, but only have additivity.

L. Leemann (Essex Summer School) Day 7 Introduction to SL 29 /31



Example: Auto Dataset
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Lab

© Polynomial models and CV
« Natural splines and CV
o Putting it all together: GAM
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